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The effect of anisotropy on shock waves in an incompressible elastic medium is studied. No assumption 

is made here concerning the smallness of the deformations. Particular attention is paid to those 

materials for which the non-linear stress-strain relation has a point of inflection. The anisotropy is 

assumed to be small compared with the effect of the non-linear properties of the medium, but this turns 

out to be quite sufficient for new qualitative effects to be revealed. 

A set of states behind the shock wave (the shock adiabatic curve) for a specified state ahead of the 

shock wave as well as the velocity of motion of the shock wave front for an incompressible medium 

with small anisotropy of arbitrary form are found and investigated using conservation laws. The shock 

adiabatic curve is clearly presented in the case of the simplest actual form of anisotropy. The segments 

on it which correspond to the requirements of an evolutionary character and no decrease in the entropy 

are indicated. 

l. In order to describe the motion of an elastic medium with plane waves, we shall use a 
Lagrangian Cartesian system of coordinates X, (i = 1, 2,3) of the initial state where the axis 
x, = x is taken as being along the normal to the wave front while the axes ,Q (a = 1, 2) are in 
the plane of the wave front. In the general case, a deformation in the Lagrangian description is 
characterized by the displacement gradient tensor &vi/&,. Only two components of the 
above-mentioned tensor, that is, awi /ax, i = 1, 2 (aw,/ax= 0 on account of the incompressi- 
bility of the medium), can change during the passage of a plane wave in an incompressible 
medium, for which we shall adopt the notation awi I&x = ui(x, t). 

It is well known that a hyperbolic system of equations of motion of an elastic medium [l] 
admits of discontinuous solutions. Their occurrence may be due to discontinuous initial and 
boundary data and they may also arise when the wave profile is deformed during its evolution. 
The study of Riemann plane waves in an elastic solid [2] enables one to indicate, in the case of 
each real material, those processes which lead to an inversion of the wave profile and to the 
formation of a discontinuity. 

On a surface of discontinuity, relationships, which follow from the integral laws for the 
conservation of mass, momentum and energy, must be satisfied. We shall denote the 
magnitude of the discontinuity in any physical quantity at the shock front by [a] = a+ -a-, 
where a- is the value of the physical quantity immediately ahead of the discontinuity and a+ 
(or a) is the value immediately behind it. If at the front there is no generation or absorption of 
mass, momentum and energy, then the conditions at a discontinuity in an elastic medium have 
the form [l, 31 

30 
[ 1 - =po@[u.] 
aui I * i=1,2,3 (l-1) 
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Here W is the velocity of propagation of the wave front along the Lagrangian coordmate. 
@(u,, S) is the elastic potential of the medium (the internal energy per unit of initial volume), S 
is the entropy per unit mass and p0 is the density of the medium in the initial state. In the cast 
of an incompressible material, i = 1, 2 and p0 =p= const. For a specified state ahead of the 
shock wave, system (1.1) defines a set of possible states behind the shock wave. each of which 
corresponds to its own value of IV. This single-parameter set represents a curve m phase space. 
II,. S which is referred to as the shock adiabatic curve. It is obvious that its form and properties 
depend on the actual function @(u,, S) which specifies the material. 

In the case of a compressible medium, the possible sates behind a low-intensity shock wavy 11: a~: 

unstressed isotropic medium have been investigated previously in [l]]. those in the cast’ of a previoush 

deformed or naturally anisotropic medium have been investigated in [3, 4] and the possible states behind 

a shock wave of finite intensity in an isotropic material with a special form of the function CD have been 

investigated in [5. 61. In the case of an isotropic incompressible medium, the plane polarized shock waves 

(in which only one of the quantities M,. 1~ changes) have been studied in 171. 

In isotropic media, the elastic potential CD depends, in a symmetric manner, on the 
components 111 and 1~~ of the shear deformations in planes parallel to the wave front. Then. 
instead of the components II, and l/z, one can introduce the modulus of shear deformation cT 
using the equality &f = II,’ + ~2’ = r’. By virtue of the assumed smoothness of the dependence of 
CD on 11~ and 11~ in an isotropic material. <D = Q(?. S). The internal energy of a medium with an 
electromagnetic field frozen into it in magnetohydrodynamics possesses a similar property [8]. 
Also, in anisotropic media, the direction of propagation of plane waves can turn out to be such 
that there is symmetry in the dependence of CD on l+ and ZQ. that is, @ = Q(?. S) again, in the 
plane of the wave front. We shall refer to such a situation as “wave isotropy” and subsequently 
refer to the case which differs from this as anisotropy. 

Below. we study shock waves in incompressible media in the case of which WC’ assume that 
the divergence from wave isotropy is small and we represent the elastic potential In the form oi 
two terms 

@(u;,S)= F(uf +u;.s)+gPb;) if 2; 

the first of which contains all the basic non-linear properties of the medium while the second 
adds a small anisotropy, where p(lr,) is a function of arbitrary form and s>O is a small scale 
factor. Apart from this, we shall assume that the dependence of @ on the entropy S is additive. 
The elastic potential is then given by the expression 

@(u,,S)=F(r2)+gp(u,,u2)+yf(S), r2 =uf+ui O.jj 

The calculation of the stresses from the strains is determined by the derivatives of @(u,. S) 
with respect to II, when S = const. The assumption regarding the additivity of the entropy in 
the study of the shock waves means that a change in the entropy in these waves has only a 
negligibly small effect on the dependence of the stresses on the strains. In particular, this 
assumption holds when the change in the entropy in a shock wave is small which, as will 
become clear subsequently, is satisfied quite well in the cast of those shock waves whose 
behaviour is substantially affected by a small anisotropy. 

In the absence of no anisotropy (g = 0). the dependence of the shear stress or on the shear 
strain E, = r is given by the formula 

B, =[(aF/a~,)~+(aF/Ou~)‘]~ =dF/dr 

Let us use the notation ctFlrtr_= f(r). In certain cases, it is convenient to assign negative 
values to I’. assuming that F(r) = an cvcn function. Then f(r) is an odd function. The 

investigation of low-intensity shock waves has shown that there is a substantial difference in 
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their behaviour depending on the direction of convexity of the graph of f(r), which represents 
the link between the shear stresses and the shear strain. The formation of shock waves from 
Riemann waves has also pointed to similar differences [2]. In order to encompass a wider class 
of media which allow of large elastic deformations, let us take a functionf(r) which changes the 
direction of convexity, which is shown in Fig. 1, for example. Such a form of the dependence 
f(r) with a point of inflection is observed experimentally, for example, in materials of the 
rubber type. These materials are characterized by an almost complete absence of bulk strains 
[9, lo]. Then, the point of inflection of the graph of f(r) is denoted by r = r -. 

If a ray, which passes from the origin of coordinates through a point corresponding to a state 
behind the discontinuity, intersects the graph of the functionf(r) twice, then we shall refer to 
the point which is closer to the origin of coordinates as A and that which is further from the 
origin as B. These points (one or the other) will subsequently be adopted as the initial state in 
the study of discontinuities. 

The whole of the investigation can be illustrated in the phase plane of the shear strains u, 
and II,. For the initial state, we adopt the notation U; = U,, r- = R, f(R) = fo. Equations (l.l), 
in the case of medium described by the elastic potential (1.3), have the form 

[yf]=-[F]+; f$+j+ ( 1 ( bal-g [Pl-;cPa -PJbal) 

pa =aplah, ~=(uF+ui)fi, a=&2 

(1.4) 

2. We will first present the properties of the discontinuities which are subsequently required 
in the case of wave isotropy (g = 0). Some of these are well known [5-71 while the others can be 
readily obtained for the cases which are considered below. By eliminating W from system, (1.4) 
when g = 0, it is possible to obtain the equation of the shock adiabatic curve passing through 
the initial point 

( 1 f-* (Up2 -U*u,)=O (2.1) 

It is obvious that, in the ~(1, u, plane, the shock adiabatic curve consists of the line 
U,u, - U,u, = 0, which passes through the origin of coordinates and the initial point, and the 
circles f(r)/r = j, / R (Fig. 2). There can be two such circles in the case of the form of the 
functionf(r) which has been adopted. They pass through points A and B (Fig. l), one of which 

Fig. 1. Fig. 2. 
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represents the initial slate. This form of shock adiabatic curve enables one to separate out all of 
the discontinuities into plane-polarized discontinuities, corresponding to jumps from one point 
of the straight line onto another, and rotational discontinuities which correspond to jumps 
from one point of a circle to another point of the same circle and consider them independently 
[5-S]. For example, if the initial state corresponds to point A, then a jump from this point to 
some other point on the circle r=rb is treated as two discontinuities moving with the same 
velocity: a plane polarized jump from A to H and a rotational discontinuity along the circle 
1’=, B’ 

PW2 =(f--h)/(r-m (2.2) 

follows from (1.4) for the velocity of plane polarized discontinuities. 
If the jump is of very small intensity, then its velocity becomes the corresponding character. 

istic velocity p W,’ = PC,’ = dfl&. According to (1.4), the velocity of a rotational discontinuity is 
pWO’ = f/r and is identical to the characteristic velocity c,. A geometrical interpretation can be 
given to the above-mentioned velocities in the form of the angles of inclination of the chord 
joining the initial and final point of the graph of f(r) in Fig. 1 (W,) of the tangent to this graph 
(c,) and the ray from the origin of coordinates to the point under consideration ( W, == c,) 

The difference in the angles of inclination of the secant and tangent at this point is 
represented by the function d = fir-f’. The fact that it tends to zero in the neighbourhood 01 
r = 0 corresponds to the transition to linear elasticity. When d # 0, we shall use the notation 
c, = min(c,. c,). cz = max/c,. c,) and refer to the waves corresponding to them as the slow and 
fast waves, cZ > c,. In the graph of f(r) (Fig. 1). apart from r = 0, a further point r = r* > r exists 
such that d(r,) = 0 and C, = c,. To the left of this point pi > 0 and c2 = c,, that is, the rotational 
wave is fast. For states when r > r*, the plane polarized wave c? = c, will be fast since n < 0. 

The requirement that shock waves are of an evolutionary character. which expresses the 
correctness of the boundary conditions on the shock front, imposes constraints on the velocity 
of the jump W. The conditions for an evolutionary character of a general type in the case 01 
discontinuities in media with two characteristic velocities which differ in their moduli requires 
that one of the two systems of inequalities 

(0) (c;j2 c w2, (c;j2 s w2 s (c;)~,(~)(c;)~ G w2 Go, w2 c cc;)” (2.3) 

should be satisfied. 
In case a the discontinuity is said to be fast while, in case h. it is said to be slow. It is obvious 

that plane polarized and rotational waves can be both fast as well as slow depending on the 
sign of d 

It was found above that the velocity of a rotational discontinuity W, = f/r is identical to the 
characteristic velocities c, on both sides of a discontinuity. Hence, according to (2.3). a 
rotational discontinuity is evolutionary. Furthermore, it is readily verified that the entropy 
does not change at this discontinuity, [S] = 0 and the thermodynamic requirement that the 
entropy should not decrease is satisfied. The above-mentioned properties of a rotational 
discontinuity make it indistinguishable from a Riemann wave of the same type [2]. For 
subsequent purposes it is necessary to point out that the two constraining requirements 
imposed on rotational discontinuities are satisfied in the form of equalities. that is, on the 
bounds of what is permissible. 

In the case of plane polarized waves it is easy to find the parts of (2.23) with the evolutionary 
property using the geometrical interpretation of the expressions for the velocity of a 
discontinuity and the characteristic velocities. The position of these parts depends on which 01 
the points A or H is adopted as the initial state. 

Those parts of the plot of f(r) which correspond to conditions (2.3) are distinguished by the 
bold lines in Figs 3(a) and (b): (a) in the case of the initial state at point A and (b) at point B. 
At the ends of the sections with the evolutionary property, the velocity of the discontinuity is 
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identical to one of the characteristic velocities. By analogy with the theory of detonation, we 
shall refer to such points as Jouguet points. In Fig. 3(a), W, = W, = c;, W, = W,. = c;, WE = c,’ at 
the Jouguet points and, in Fig. 3(b), W, = W, = c;, W, = W,. = c;, WE = CT. Point L was obtained 
at the intersection of the plot of f(r) with the tangent to it at the initial point. The case when 
R=r,cr-. is shown in Fig. 3(a). If r, > r’-, then, as before, the section LA will be non- 
evolutionary but point L is located to the left of point A. 

Apart from the general conditions for the evolutionary character of (2.3), additional 
conditions must be imposed in the case of wave isotropy (g=O) for plane-polarized 
discontinuities which involve the satisfaction of a further one of the two systems of inequalities 
[ill 

(4 w* G w*, (c,+Y s w*, (d) w* d (c,-)2, w* 6 (&2 (2.4) 

These requirements follow from the fact [8] that, when g = 0, the interaction between the 
plane-polarized discontinuity and small rotational perturbations occurs independently of 
the interaction with the remaining perturbations and without changing the velocity of 
the discontinuity. The inequalities (2.4) represent the conditions for the problem of finding the 
amplitudes of the small rotational-type perturbations which emerge from the discontinuity to 
be uniquely solvable. It can be shown that conditions (2.4) forbid only discontinuities with a 
change in the sign of r. This leads to the exclusion of the sections A’E, K’B and EO from the 
solution. However, we shall not register this in Fig. 3 on account of the fact that subsequently, 
in the general case when g z 0, the additional inequalities (2.4), which are conditional upon 
isotropy, and, consequently, the constraints imposed by them, will be absent. 

To investigate the change in entropy at the discontinuity, we obtain the following 
relationship 

Fig. 3. 
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from (1.4) 
The last term on the right-hand side is [F(r)]. Since tl~/&‘= &D/&S = ~7‘ 10 [~whcre 7’ I\ 

the temperature), the sign of [w] is identical to the sign of [S]. Hence, the condition that the 
entropy should not decrease at the discontinuity requires that the area included between 
the segment of the secant passing from the initial point to the final point and the plot of f(r) in 
the same segment should be positive (Fig. 1). All segments, where conditions (2.3) and (2.4; 
are simultaneously satisfied, satisfy this requirement. 

3. The degeneracy, which is introduced by the isotropy of a medium, mainly manifests itseil 
in the existence of rotational discontinuities in which there is no change in entropy, but the 
modulus of the strain changes and the velocity of the front. which is the same for all states 
behind the discontinuity, is identical to the characteristic velocities on the two sides of thr 
discontinuity. All of this leads to the fact that the conditions for the evolutionary property and 
the requirement that the entropy should not decrease are satisfied for rotational discontinuities 
in the form of equalities, that is. they are located on the bounds of what is permissible and any 
small deviation of a discontinuity from being rotational can immediately make it unrealizable. 
Subsequently, we shall therefore pay most attention to discontinuities which arc close to 
rotational discontinuities in the case of which, on account of anisotropy. one would expect 
substantial qualitative changes in the composition of the solution. 

In the case of plane-polarized waves all of the above-mentioned characteristics are l’unclions 
of r and the addition of small terms with anisotropy only introduces a small quantitative 
correction to their values. 

Considering the case when ,q #O. we note L’irst of all that, first, the separation of the wave:\ 
into plane polarized waves and rotational waves loses its meaning and. second, when ,q # 0. the 
additional evolutionary conditions (2.4). associated with the above separation 01 the wavc4 and 
with the special form of the dependenccs when s=O. must not be imposed. A discussion ctt 
these questions in the cast of small-amplitude waves has been given in [ 111 and it cqualb 
applies to waves of finite amplitude. 

Since the case of small values of g is being considered. it may be expected that the shock 
adiabatic curves of the velocity of the discontinuities, of the small perturbations and of the 
entropy jumps change only slightly compared with the case when s = 0. One may therefort 
speak of quasi-plane-polarized and quasi-rotational discontinuities, bearing in mind tltc 
closeness of the point which depicts the final state to the corresponding part of the \hock 
adiabatic curve when <q = 0. However, when g # 0, such a separation loses its strict scnsc. 

We will initially consider the form of the shock adiabatic curve described by an equation 
which we obtain from (1.4) by the elimination of W 

(u,u, - u,u, ) = gH, H=(p2-~;)(q -u,)-(P, -!‘;)(“2-1’2! (3.1 i 

Assuming that <q is small in magnitude, it is possible to calculate the values ol the right-hand 
side of M at the corresponding points of the shock adiabatic curve when ‘q = 0 and therebv tc! 
treat it as being known. In the case of quasi-rotational and quasi-plane-polarized waves. wc: 
then obtain respectively 

Ar=g 
Hr 

(lJ,u, - lJ,u,)d ’ 
d=-T-f’. U,u2-u2u,=g H 

r flr-folR 
ii.:j 

The left-hand sides of these equalities characterize the deviations of the points of curve iZ.1) 
from the shock adiabatic curve which corresponds to g = 0, that is. from the circles I’ = r,! or 
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r = r, and from the straight line U,u, - U,U, = 0 (Fig. 2). The right-hand sides are calculated on 
the shock adiabatic curve with g =O. If H $0, then, according to (3.1), the calculated 
deviations tend to infinity as the point of intersection of the circle with the straight line is 
approached and the shock adiabatic curve itself in the neighbourhood of this point behaves 
like an hyperbola. This conclusion does not apply to the neighbourhood of the initial point 
where H = 0 and where there is always a point of self-intersection of the branches of the shock 
adiabatic curve. 

The part of the shock adiabatic curve close to the circle r = R, which passes through the 
initial point, represents quasi-rotational discontinuities. Small values of the jumps in the 
modulus of the strain r-R-g and the entropy S-S’ _ g are characteristic of such discontin- 
uities. The branch of the shock adiabatic curve which is close to the second circle r + R 
corresponds to jumps with a change in r and S by a finite amount. Such discontinuities are no 
longer quasi-rotational discontinuities, although they do have much in common with them. We 
shall call them quasi-circular discontinuities. 

Conditions (2.3), where the velocity of the jump is represented by the expression pW” = 
(f - fO) /(r -R) +g{ and the function 5 is bounded as g + 0, must be satisfied when searching 
for the sections of quasi-plane-polarized discontinuities with evolutionary character on the 
shock adiabatic curve when g z 0. In this formula, the first term is the main term, which has 
been used previously in (2.2) in verifying conditions (2.3) when g = 0.. This does not enable 
one to write out the function 5 in explicit form. The presence of a second term in the 
expression for W only slightly displaces the ends of the evolutionary sections (Jouguet points) 
obtained when g = 0. As previously, they may be taken to be as shown in Fig. 3. Moreover, the 
intervals close to the sections A’E, KB’ and EO, which are excluded by conditions (2.4) when 
g = 0, will also be evolutionary. 

In verifying the thermodynamic requirement [S] 3 0 for quasi-plane-polarized discontin- 
uities, a small correction of -g on account of anisotropy in the rule of areas (2.5) again, in the 
general case, only slightly displaces the positions of the ends of the sections where [S]s 0 
found when g= 0 by the geometric method. Here, there is no need to find these intervals 
exactly and it suffices to check that the condition [S]>O is satisfied in just the evolutionary 
intervals which have been obtained. It turns out that, in all of the intervals shown in Figs 3(a) 
and (b) apart from EO, the thermodynamic requirement is satisfied and, furthermore, the 
evolutionary condition (2.3) appeared to be more rigorous than [S] > 0. 

The section EO requires a special discussion. The fact that the condition [S] 2 0 is satisfied 
in this interval is determined by the fact that the initial point B is located far from the origin of 
coordinates in the plot of f(r). depending on this, a thermodynamically appropriate domain 
around the origin of coordinates may contain point 0, it may lie completely to the left of it or 
disappear completely when point B departs sufficiently far to the right. In this case, the section, 
where conditions (2.3) and [S]a 0 are simultaneously satisfied, contracts to the point E and, 
consequently, the thermodynamic requirement turns out to be stronger than (2.3). 

In the case of jumps to points of the shock adiabatic curve close to the circles, the velocity W 
is calculated using a formula obtained from (1.4) 

pw2 =f+p2 -Pi)4 -(PI -PixJ2 
r 02 - u2u, 

(3.3) 

The difference between W2 and the velocity of the characteristics fir and, consequently, the 
domains where conditions (2.3) are satisfied, are exclusively determined by the second term 
which introduces the anisotropy. It is also the same in the case of the entropy jump [S] and the 
difference in this quantity from zero or a constant in the case of quasi-circular discontinuities is 
solely determined by the anisotropic terms. For this purpose, it is necessary to have the 
function ~(zL,) specified in explicit form. 



4. We will now consider a medium with a specific type of anisotropy. Let y- li 2(z1; -uJ). 
The function y has such a form in the domain of small deformations when there is anisotropy 
created by preliminary deformation [3] as well as for orthotropic, transversely isotropic and 
certain other materials [4]. The equation of the shock adiabatic curve (2.1) takes the form 

( 1 f-$ (~1% -W,)=g(u, -U,)(u, -U,) (4.1 ) 

It is shown in Fig. 4(a) when the initial state is represented by point A and R = r, e r +: and, m 
Fig. 4(b), when R = r, > r *. Sections close to the straight line U,u, -U,u, = 0 which serves as an 
asymptote at fw, correspond to quasi-plane-polarized waves. The difference in the form of the 
curve depends on the form of the function f(r) and the position of the initial point r = R. The 
deviation from the circles r = rA and r = rk is determined by the quantity Ar according to (,3.2). 
where H = (z+ - U1)(z12 -U,) in the case of the chosen medium. The intersection of the shock 
adiabatic curve with the above-mentioned circles and a change in the sign of Ar occurs at 
points with the coordinates II, = U, and II? = U,. Here, because of the opposite signs in the case 
of the function (i = f/r-f’ on the circles r = r,, and r=rk and the deviation Ar is in the 
opposite direction at the corresponding points on these circles. 

In calculating the entropy jump, the coefficient accompanying g in formula (1.4) for the 
chosen form of the function p(rr_) was found to be equal to zero so that, as previously. the 
change in the entropy in such a medium is found using the rule of areas (2.5). When R = t; c r c 
(Fig. 4a), d(R) > 0 and the entropy jump is non-negative within the circle r = R, that is. at those 
points of the shock adiabatic curve for which I II? I?=Uz To it is added the whole of the domain 
of the shock adiabatic curve close to the circle r = rB and the section which departs to +oo along 
the asymptote. In the case of an initial state which is specified by point B , R = r8 > r* (Fig. 4b). 
and the intervals of the shock adiabatic curve outside of the circle r = R = rBt that is, I IL? i 2 U, 
satisfy d(R) < 0 and the condition [S] > 0. Branches, which depart to +M along the asymptote 
are added to it and a certain interval in the neighbourhood of the origin of coordinates, the 
existence of which has been stipulated above and depends on the form of the function f(r) and 
how far away the initial point H is on the graph off. 

In order to verify the evolution conditions (2.3) we use the expressions for the characteristic 
velocities c, and c2 found in [2] in the polar coordinates r and 0 of the u,, 11~ plane 

pc;* =d+f’i(& +2gdcos2e+g*)~ 

By virtue of the smallness of 8, we obtain for the velocities of quasi-rotational small 
perturbations c, : pci = f/r + g cos 8, p(c,)‘=f,/R g + cos0,. The angle 6, corresponds to the 

state ahead of the jump. The velocity W of a discontinuity of the same type is found from (3.3) 

Fig. 3 
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PW2 f =-+g up, + u,u, - 2u,u, 

r 4u2 - U2Ul 

or, in polar coordinates 

PW2 
f =-+g 

sin(Ct+Oa)-(R/r)sin280 fo =-- 
R g 

sin(0+8,)-(r/R)sin28 

r sin@ - eo) sin@-ea) 

The evolution conditions (2.3) for domains of the shock adiabatic curve close to the circles 
require that the inequalities 

w2-c; =g 
~sin(8+80)-Msin(38-80)-(R/r)sin280 ~ 0 

sin@ - 8,) 
(4.2) 

w2 _(c_)2 =g(rIR)sin28-sin(6+Bo)-cos28,sin(8-Bo), 0 
8 sin@ -e,) 

be satisfied. 
It is sufficient to calculate the coefficients of the small g in these formulae at the points of the 

corresponding circles, that is, to put r = R for quasi-rotational waves (r = R is the circle passing 
through the initial point wherever it is located) and for the other almost circular branches of 
the shock adiabatic curve r = r, > R in Fig. 4(a) and r = r, CR in Fig. 4(b). We recall here that 
c, =c, when d ~0 and c, = c, when d< 0 which enables one to distinguish which of the 
discontinuities are fast and which are slow. 

The graphical solution of the equalities (4.2) yields the Jouguet points which act as the 
boundaries of the evolutionary intervals and are denoted in Fig. 4 by the letters F, K, K,, K,, 
Q, Q(W = c;), Z,(W = c;), E, H, H,(W = c,+), J(W= cl). Investigation of the signs of 
expressions (4.2) separates out the evolutionary segments in the shock adiabatic curve. They 
all simultaneously satisfy the requirement that [S]* 0. 

In the case of quasi-planar-polarized waves, the analogous sections have been found above 
in Section 3 for any function R(u,). Hence, all of the domains of the shock adiabatic curve have 
been determined where conditions (2.3) and [S]> 0 are simultaneously satisfied. They are 
picked out by the bold lines in Fig. 4. The fast and slow discontinuities are labelled with the 
letters fand s, respectively. 

We add that the entire investigation can also be used for other functions f(r); for example, 
with opposite alternation of the convexity and concavity of the graph. In the latter case, if the 
u, and 1~~ axes are interchanged, the form of the shock adiabatic curve remains as before as 
well as the position of the Jouguet points on it. The intervals, where the requirements for 
evolutionary character and no decrease in the entropy are satisfied, change but are found using 
the same expressions for c,, W and [S]. The occurrence of additional points of inflection on 
the graph off adds new parts of the shock adiabatic curve close to circles of a type such that 
r=r, and r=th. 

In particular, the results which have been obtained can be applied to the case when [U,] are 
small. They are completely identical to the results obtained previously for low-intensity shock 
waves [3]. 

Note that the additivity of the dependence of the elastic potential on the entropy, which has 
been assumed in (1.3), actually has no effect on the results obtained above referring to 
rotational waves. The assumption (1.3) means that an entropy change has no effect on the 
stresses in the medium. If one considers a quasi-rotational wave in which r = R then, for 
sufficiently small g, this assumption can be taken to be valid as a consequence of the smallness 
of [s]. If a jump to a point close to a circle which does not pass through the initial state is 
considered such as, for example, from point A to a point close to the circle r = r,, then 
S = S, + AS, where AS is small for small g. In the final state, one may then accept equality (1.3), 
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assuming that F = F(r’, S). y = pT,AS, I;- = F(R”, S,) and analogous equalities for S /&. 
I thank A. G. Kulikovskii for his interest and for discussing the results. 
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